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Nonuniversality in the pair contact process with diffusion
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We study the static and dynamic behavior of the one dimensional pair contact process with diffusion. Several
critical exponents are found to vary with the diffusion rate, while the order-parameter moment ratiom

5r2/ r̄2 grows logarithmically with system size. The anomalous behavior ofm is traced to a violation of
scaling in the order parameter probability density, which in turn reflects the presence oftwo distinct sectors,
one purely diffusive, the other reactive, within the active phase. Studies restricted to the reactive sector yield
precise estimates for exponentsb and n' , and confirm finite size scaling. We also determine the valuemc

51.334 for the parity-conserving universality class in one dimension.
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The pair contact process~PCP! @1,2# is a nonequilibrium
stochastic model which, like the basic contact process~CP!
@3–5#, exhibits a phase transition to an absorbing sta
While the absorbing state in the contact process corresp
to a unique configuration~an empty lattice!, the PCP pos-
sesses infinitely many. Numerical and theoretical stud
nevertheless, indicate that the PCP belongs to the same
versality class as the CP@namely, that of directed percolatio
~DP!#, but with anomalies in the critical spreading dynam
@1,2,6–12#. An infinite number of absorbing configuration
arise in the PCP because all processes~creation and annihi-
lation!, require a nearest-neighbor~NN! pair of particles~to
be referred to simply as a ‘‘pair’’ in what follows!. If indi-
vidual particles are allowed to hop on the lattice, howev
there are but two absorbing states: the empty lattice, and
state of a single particle hopping.

Study of the diffusive pair contact process~PCPD! was
stimulated by the observation of Howard and Ta¨uber @13#
that its Langevin description would involve complex nois
On the basis of numerical results in their pioneering dens
matrix renormalization group study, Carlonet al. @14#, noted
that certain critical exponents in the PCPD had values sim
to those known for the parity conserving~PC! universality
class. Hinrichsen@15# reported simulation results inconsi
tent with the PCPD being in the PC class, and proposed
the model defines adistinctclass. In particular, while model
in the PC class possess two symmetric absorbing states
two absorbing states of the PCPD are not related by
symmetry. Interestingly, Parket al. found that even when
such a symmetry is imposed on the PCPD, its critical ex
nents remain different from those of the PC class@16#. The
distinctive behavior of the PCPD was further confirmed
simulations by O´ dor @17#, who presented evidence for th
existence of two universality classes~for diffusion probabili-
ties greater than, or less than, about 0.3!. Henkel and Scholl-
wöck, suggested, on the basis of a study of universal fin
size scaling amplitudes, that for finite diffusion rates, t
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critical behavior of the PCPD belongs to a single universa
class@18#. In a further variant of the PCPD, critical expo
nents are found to vary with the survival probability fo
newly created pairs@19#. Our goal in this Rapid Communi
cation is to shed some light on this rather confusing situat
by studying moment ratios and probability distributions
the critical PCPD.

The PCP is defined on a lattice, with each site either
cupied ~by a ‘‘particle’’! or vacant. Only pairs of occupied
sites exhibit activity; each has a rate ofp of mutual annihi-
lation, and a rate of 12p to create a new particle at a NN
site, if this site ~chosen at random! is vacant. Forp.pc

@.0.077 090(5) in one dimensional@6#!, the system falls
into the absorbing state~all activity ceases!. The order pa-
rameter is the density of pairs.

In the PCPD, in addition to the creation and annihilati
processes described above, each particle attempts to ho
rateD, to a randomly chosen NN site; the move is accep
if the target site is vacant. The model again exhibits a c
tinuous transition to the absorbing state, at a critical ann
lation ratepc(D) that increases with the diffusion rate. Onc
particles are allowed to diffuse, the nature of the syst
changes radically. The absorbing state is modified as no
above, and the order parameter is now the particle den
not the pair density. In contrast to simpler models like t
CP, in which diffusion does not alter the critical behavi
@20,21#, diffusion represents asingular perturbationin the
PCP.

We perform extensive simulations of the one-dimensio
PCPD, using systems ofL520, 40, . . .,1280 sites, with du-
rations of 104–43106 time steps, and sample sizes
104–106 realizations. Initially all sites are occupied. We d
termine the mean particle densityr̄, and pair densityrp, the
moment ratiom5r2/ r̄2, and the survival probabilityPs(t).
~The overline denotes a stationary average.! The exponential
decay of the latter permits us to determine the lifetimet.

Experience with absorbing-state phase transitons lead
to expect the following scaling properties at the critic
point: r̄;L2b/n'; t;Ln uu /n'; andm→mc , a universal criti-
cal value@6#. We use power-law dependence ofr̄ on system
©2002 The American Physical Society01-1
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size to determine the critical annihilation ratepc(D). For
comparison, we applied the same algorithm to the par
conserving branching-annihilating random walk~BAW!
model studied by Zhong and ben-Avraham@22#.

Figure 1 shows the scaling of the order parameter w
system size, at the critical point, for the PCPD and the BA
in the PCPD,b/n' decreases with increasing diffusion rat
~The similarity between the PCPD withD50.5 and the
BAW appears to be a coincidence; the scaling oft is quite
different in the two cases.! Figure 2 shows that while the
moment ratiom attains a limiting value in the BAW model, i
growswith L in the PCPD~roughly,; ln L), a most unusua
behavior. Using the extrapolation procedure of Ref.@6#, we
find mc51.3340(4) for BAW@mc51.1735(5) DP in 111
dimensions@6##.

At the critical point, the probability distributionP(r;L) is
expected to exhibit scaling,P(r;L)5 r̄P(r/ r̄) (P is a nor-

FIG. 1. Particle densityr vs system size at the critical point i
the PCPD and the BAW model.

FIG. 2. Moment ratiom vs system size at the critical point in th
PCPD and the BAW model.
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malized scaling function!, as was verified for the PCP with
out diffusion@2#. In the PCPD, the steady growth ofmc with
system size precludes scaling. The particle and pair proba
ity distributions, shown~for D50.1) in Fig. 3, evidently do
not scale. Instead, the most probable particle number is
ways 2, and the overwhelmingly most probably number
pairs iszero, independent of system size. The distributio
exhibit a tail that grows broader with increasing system si
these ‘‘tail events’’ are responsible for the observed criti
behavior. The tails, which have a Gaussian form, again v
late the scaling relation.~The pair distribution exhibits a sec
ond maximum, away fromrp50, at a value that increase
roughly asL0.6.!

The particle and pair probability distributions confir
lack of scaling, and, perhaps more importantly, provide
clue to the enigmatic behavior of the process. In the PC
being in the active~i.e., nonabsorbing! state implies that
there are at least two particles, but not neccessarily any p
at pc , the process apparently favors configurations with
pairs.~For D50.1, for example, the probability of having n
pairs is about 0.8, and shows no sign of decreasing aL
grows; forD50.5 this probability is about 0.58, and forD
50.85, about 0.5.! In this ‘‘purely diffusive’’ sector, the ac-
tivity is that of a set of random walkers, but the partic
number does not change, and critical fluctuations are
generated. From time to time the system ventures into
‘‘reactive’’ sector~at least one pair!, and may exhibit a burs
of creation and annihilation reactions. We expect the la
activity to possess scale invariance atpc . SinceP(r;L) is a
superposition of distributions associated with the two s
tors, lack of scaling is quite understandable. In the pur
diffusive sector, the particle-number distribution is high

FIG. 3. Probability distribution of the number of particlesn at
the critical point, forD50.1; 1, L580; 3, L5160; h, L5320.
The inset shows the corresponding probability distributions for
number of pairs,np . Note that the most probable value ofnp is
zero.
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peaked atn52, with a mean value of 3.2–3.5, independe
of system size.

These observations motivate us toexcludethe purely dif-
fusive sector by studying propertiesconditioned on having a
least one pairin the system, as was done in Ref.@19# for
different reasons. Note that this does not modify the dyna
ics of the system in any way; we simply restrict the avera
to configurations having one or more pairs. Figure 4 sho
the order parameter distribution in the reactive sector, plo
in the reduced variablesr* 5r/ r̄ and P* 5 r̄P. The distri-
bution is now similar to that found in the nondiffusive PC
@2#, with a maximum at a nonzero value of the order para
eter, and shows evidence of scaling. Thus the behavior in
reactive sector is much closer to that familiar from the co
tact process and the PCP.

Closer examination reveals, however, that the scaling
lapse is imperfect. Studies of larger systems confirm that
maximum of the scaled order parameter distribution gra
ally shifts to smaller values ofr* , and that the distribution
becomes broader, with increasingL. While we do not claim
to have a complete understanding of this ‘‘defect,’’ a possi
explanation is that for largeL, configurations with a single
pair represent a system with only a small reactive region,

TABLE I. Critical exponents for the PCPD and the BAW mode
figures in parentheses denote uncertainties. BAW results are t
from Ref. @22#.

D pc b/n' b n uu /n' d

0 0.077090~5! 0.2523~3! 0.2765 1.577~4! 0.1595
0.1 0.10648~3! 0.503~6! 0.546~6! 2.04~4! 0.249~5!

0.5 0.12045~3! 0.430~2! 0.468~2! 1.86~2! 0.236~3!

0.85 0.13003~1! 0.412~2! 0.454~2! 1.77~2! 0.234~5!

BAW 0.497~5! 0.922~5! 1.74~1! 0.286~2!

FIG. 4. Scaling plot of the probability distribution in the reactiv
sector, at the critical point, for the same parameter values as in
3. Inset: moment ratiom vs system size in the reactive sector; fille
squares,D50.1; 1, D50.5; 3, D50.85.
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remainder residing in the purely diffusive sector. We defe
full investigation of this rather subtle question to futu
work.

Once we restrict the sample to the reactive regime,
eliminate a large source of uncertainty~i.e., the erratic
switching between the two sectors!, and are able to obtain
more precise results. Using, as before, the criterion of pow

law dependence ofr̄ on system size, we determine the cri
cal parameterpc and the ratiob/n' to good precision; these
values are given in Table I. Restricting the averages to
reactive sector changes the value ofpc by 0.1% or less.
There are more pronounced changes inb/n' : without the
restriction, we obtain 0.585, 0.50, and 0.465 forD50.1, 0.5,
and 0.85, respectively.~We regard these as poorer estimat
colored by the superposition of the two sectors.! Figure 4
~inset! shows the critical moment ratiomc versus system
size, in the reactive sector. Its value is now comparable~for
the system sizes studied here! to that for the DP and PC
classes, but a slow growth~roughly linear in lnL) is again
evident.~Restricting the sample to configurations with tw
pairs leads to a reduction inm, but not in its rate of growth
with system size.!

A possible weak point in our analysis is that we assu
finite size scaling~i.e., the power-law dependence ofr̄ on
system size!, in determiningpc , whilst the results form
indicate that there is still a~relatively weak! violation of
scaling. We therefore check our method by studying the
der parameter~again restricted to the reactive sector! in the
supercritical regime,p,pc . We verify that the order param
eter follows a power law,r̄;(pc2p)b, and in so doing ob-
tain the estimates forb given in Table I. This exponent de
creases steadily withD, as found in Ref.@17#. ~A direct
comparison with Ref.@17# is not possible since the latte
study uses a parallel-update scheme, in contrast to the
quential updating used here.!

In fact, our results verify finite size scaling relation,r̄
5L2b/n'R(L1/n'D), whereD5pc2p and the scaling func-
tion R(x);xb for x@1; the data collapse is evident in Fig
5. From this analysis we obtainn'51.10, 1.09, and 1.10 for

en

ig.

FIG. 5. Scaling plot of the order parameter in the reactive se
for D50.1; 1, L5640; 3, L51280; h, L52560.
1-3
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D50.1, 0.5, and 0.85, respectively, suggesting that this
ponent does not vary with the diffusion rate.

We also studied the decay of the particle density star
from a fully occupied lattice at the critical point, restrictin
the sample to the reactive sector.~In the early stages of the
evolution, the probability for the system to be in the react
sector is nearly unity, but at later times this probability d
cays much more rapidly than the survival probability itse!
The order parameter decays asr;t2d. From a data-collapse
analysis of r(t), using the finite-size scaling form,r
5L2b/n'F(t/Ln uu /n'), we obtain the estimates forz
5n uu /n' listed in Table I.~Without the restriction to the re
active sector we find 1.87~1! for D50.1, 1.82~1! for D
50.5 and 0.85. Further results on dynamic properties will
reported in Ref.@23#.! Our results satisfy (n uu /n')(n' /b)d
51 ~as expected, given the scaling relationb5n uud), to
within uncertainty.

In summary, we have performed extensive studies of
PCPD, including the probability distributions for the ord
parameter and number of pairs. Our results clearly excl
the model from both the parity-conserving and the DP u
versality classes. The criticial exponentsb, h, andn uu vary
with the diffusion rate, whilen' appears to be independe
of this parameter. An interesting open question is whether
s
e,

ys

s.
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PCPD can be described by a single universality class~with
unusually strong corrections to scaling! @18#, two distinct
universality classes~one for high diffusion rates, the othe
for low, but finite D), as suggested by O´ dor @17#, or even
exponents that vary continuously withD. Our data are not
sufficient to distinguish between these hypotheses. We n
however, that we observe relatively little change in the e
ponent values forD50.5 and 0.85, compared with th
changes betweenD50.1 and 0.5. A similar observation ap
plies to the size dependence ofm shown in Fig. 4.

The growth of the moment ratiom with system size sig-
nals a violation of scaling in the associated probability d
tribution, which we have argued is a consequence of th
being two sectors, one reactive, the other purely diffusi
within the active phase. Restricting averages to the reac
sector, we find good evidence of finite size scaling of t
order parameter, and a much weaker violation of scaling
the probability distribution. We expect that decomposition
configuration space into sectors will prove useful in und
standing other systems exhibiting bursts of activity separa
by long quiescent periods.
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work was supported by CNPq, and CAPES, Brazil.
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